Problem 1.9

Perpendicular unit vector^{*} Find a unit vector perpendicular to $\mathbf{A} = (\mathbf{\hat{i}} + \mathbf{\hat{j}} - \mathbf{\hat{k}})$ and $\mathbf{B} = (2\mathbf{\hat{i}} + \mathbf{\hat{j}} - 3\mathbf{\hat{k}})$.

Solution

Taking the cross product of ${\bf A}$ and ${\bf B}$ will give us another vector that is perpendicular to both of them.

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & -1 \\ 2 & 1 & -3 \end{vmatrix} = \hat{\mathbf{i}}[(1)(-3) - (-1)(1)] - \hat{\mathbf{j}}[(1)(-3) - (-1)(2)] + \hat{\mathbf{k}}[(1)(1) - (1)(2)]$$
$$\mathbf{A} \times \mathbf{B} = -2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$$

Let's call this new vector \mathbf{n} . Because we want a perpendicular unit vector, we have to divide \mathbf{n} by its magnitude. $\hat{\mathbf{n}}$ is the unit vector in the direction of \mathbf{n} .

$$\hat{\mathbf{n}} = \frac{\mathbf{n}}{|\mathbf{n}|} = \frac{-2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{(-2)^2 + 1^2 + (-1)^2}}$$

Therefore, a perpendicular unit vector is

$$\mathbf{\hat{n}} = \frac{1}{\sqrt{6}}(-2\mathbf{\hat{i}} + \mathbf{\hat{j}} - \mathbf{\hat{k}}).$$

Note that $-\hat{\mathbf{n}}$, the unit vector antiparallel to $\hat{\mathbf{n}}$, is also perpendicular to \mathbf{A} and \mathbf{B} .