Problem 1.9

Perpendicular unit vector*
Find a unit vector perpendicular to $\mathbf{A}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})$ and $\mathbf{B}=(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})$.

Solution

Taking the cross product of \mathbf{A} and \mathbf{B} will give us another vector that is perpendicular to both of them.

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 1 & -1 \\
2 & 1 & -3
\end{array}\right|=\hat{\mathbf{i}}[(1)(-3)-(-1)(1)]-\hat{\mathbf{j}}[(1)(-3)-(-1)(2)]+\hat{\mathbf{k}}[(1)(1)-(1)(2)] \\
\mathbf{A} \times \mathbf{B} & =-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}
\end{aligned}
$$

Let's call this new vector \mathbf{n}. Because we want a perpendicular unit vector, we have to divide \mathbf{n} by its magnitude. $\hat{\mathbf{n}}$ is the unit vector in the direction of \mathbf{n}.

$$
\hat{\mathbf{n}}=\frac{\mathbf{n}}{|\mathbf{n}|}=\frac{-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{(-2)^{2}+1^{2}+(-1)^{2}}}
$$

Therefore, a perpendicular unit vector is

$$
\hat{\mathbf{n}}=\frac{1}{\sqrt{6}}(-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}) .
$$

Note that $-\hat{\mathbf{n}}$, the unit vector antiparallel to $\hat{\mathbf{n}}$, is also perpendicular to \mathbf{A} and \mathbf{B}.

